
Machine Learning with
Large Networks of
People and Places
Blake Shaw, PhD
Data Scientist @ Foursquare
@metablake

What is foursquare?

An app that helps you
explore your city and
connect with friends

A platform for location
based services and
data

What is foursquare?

People use foursquare to:
• share with friends
• discover new places
• get tips
• get deals
• earn points and badges
• keep track of visits

What is foursquare?

Mobile Social

Local

15,000,000+ people

30,000,000+ places

1,500,000,000+ check-ins

1500+ actions/second

Stats

Video:	 	 h)p://vimeo.com/29323612

http://www.youtube.com/watch?v=jfj_nJ6pvFQ
http://www.youtube.com/watch?v=jfj_nJ6pvFQ

Overview

•Intro to Foursquare Data
•Place Graph
•Social Graph
•Explore
•Conclusions

The Place Graph

•30m places interconnected w/ different
signals:
• flow
• co-visitation
• categories
•menus
• tips and shouts

NY	 Flow	 Network

People connect places over time

•Places people go after the Museum of Modern
Art (MOMA):
• MOMA Design Store, Metropolitan Museum of Art,

Rockefeller Center, The Modern, Abby Aldrich
Rockefeller, Sculpture Garden, Whitney Museum of
American Art, FAO Schwarz

•Places people go after the Statue of Liberty:
• Ellis Island Immigration Museum, Battery Park, Liberty

Island, National September 11 Memorial, New York
Stock Exchange, Empire State Building

Predicting where people will go next
•Cultural	 places	 (landmarks	 etc.)
•Bus	 stops,	 subways,	 train	 staHons
•Airports
•College	 Places
•Nightlife

AMer	 “bars”:	 american	 restaurants,	
nightclubs,	 pubs,	 lounges,	 cafes,	 hotels,	
pizza	 places

AMer	 “coffee	 shops”:	 offices,	 cafes,	
grocery	 stores,	 dept.	 stores,	 malls

Collaborative filtering

People

Places

How	 do	 we	 connect	 people	 to	
new	 places	 they’ll	 like?

Collaborative filtering

• Item-Item similarity
• Find items which are similar to items that a user has

already liked

•User-User similarity
• Find items from users similar to the current user

•Low-rank matrix factorization
• First find latent low-dimensional coordinates of users

and items, then find the nearest items in this space to
a user

[Koren, Bell ’08]

Collaborative filtering

• Item-Item similarity
• Pro: can easily update w/ new data for a user
• Pro: explainable e.g “people who like Joe’s pizza, also

like Lombardi’s”
• Con: not as performant as richer global models

•User-User similarity
• Pro: can leverage social signals here as well... similar

can mean people you are friends with, whom you’ve
colocated with, whom you follow, etc...

Finding similar items

•Large sparse k-nearest neighbor problem
• Items can be places, people, brands
•Different distance metrics
• Need to exploit sparsity otherwise

intractable

Finding similar items

•Metrics we find work best for recommending:
• Places: cosine similarity

• Friends: intersection

• Brands: Jaccard similarity

sim(xi,xj) =
xixj

kxikkxjk

sim(A,B) = |A \B|

sim(A,B) = |A\B|
|A[B|

Computing venue similarity

X 2 Rn⇥d

each	 entry	 is	 the	 log(#	 of	
checkins	 at	 place	 i	 by	 user	 j)

one	 row	 for	 every	 30m	
venues...

K 2 Rn⇥n

Kij = sim(xi,xj)

=
xixj

kxikkxjk

Computing venue similarity

K 2 Rn⇥n

Kij = sim(xi,xj)

=
xixj

kxikkxjk

• Naive solution for
computing :

•Requires ~4.5m
machines to compute
in < 24 hours!!! and
3.6PB to store!

K

O(n2d)

Venue similarity w/ map reduce

visited venues map

reduce

vi, vj

vi, vj

vi, vj

user

emit “all” pairs of visited venues
 for each user

Sum up each user’s score
contribution to this pair of venues

score

score

key

key

score scorescore ...

...

final score

The Social Graph

•15m person social network w/ lots of
different interaction types:
• friends
• follows
• dones
• comments
• colocation

What happens when a
new coffee shop opens in
the East Village?

A new coffee shop opens...

The Social Graph

The Social Graph

How can we better visualize this network?

A 2 Bn⇥n L 2 Rn⇥d

Graph embedding

•Spring Embedding - Simulate physical system
by iterating Hooke’s law

•Spectral Embedding - Decompose adjacency
matrix with an SVD and use eigenvectors
with highest eigenvalues for coordinates

•Laplacian eigenmaps [Belkin, Niyogi ’02] - form graph
laplacian from adjacency matrix, ,
apply SVD to and use eigenvectors with
smallest non-zero eigenvalues for coordinates

A

L = D�A
L

Preserving structure
A connectivity algorithm such as k-nearest
neighbors should be able to recover the edges
from the coordinates such that

Embedding

Connectivity G(K)

Edges Points

G(K)

G(K) = A

Structure Preserving Embedding

•SDP to learn an embedding from
•Linear constraints on preserve the global

topology of the input graph
•Convex objective favors low-rank close

to the spectral solution, ensuring low-
dimensional embedding

•Use eigenvectors of with largest
eigenvalues as coordinates for each node

K A

K

K

K

[Shaw, Jebara ’09]

Structure Preserving Embedding

A 2 Bn⇥n K 2 Rn⇥n L 2 Rn⇥d

max
K⇥K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⇧i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

SDP SVD

[Shaw, Jebara ’09]

Dij = Kii +Kjj � 2Kij

Large-scale SPE
constraint to be written as tr(ClK
tr(ClK) = Kjj � 2Kij + 2Kik �Kkk.

i
j

k

i j

k

tr(ClK) < 0

tr(ClK) > 0

f(L) = ⇥tr(L⇥LA)�
X

l�S

max(tr(ClL⇥L), 0).

Visualizing Social Networks
with Structure Preserving Embedding

Blake Shaw
Tony Jebara

Columbia University

Introduction The Algorithm Results
Social Network Visualization as
Low-Dimensional Graph
Embedding

Structure Preserving Constraints

Input: binary
adjacency matrix

Output: coordinates
for each node

A 2 Bn⇥n

A K
SDP SVD

Dij = Kii + Kjj � 2Kij

Dij > (1�Aij) maxm(AimDim)

Dij(Aij � 1
2) ⇥ �(Aij � 1

2)

Constraints are
linear in K

 → k-nearest neighbors:G(K)

 → epsilon-balls:G(K)

Spectral
Embedding

SPE-SGD

0 1 2 3 4
x 104

0

1

2

3

4
x 104

of nodes

of

 im
po

st
or

s

Spectral
SPE

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Given a network of n nodes represented as a
graph with adjacency matrix A ⌅ Bn�n, SPE finds an
embedding L ⌅ Rd�n such that d is small and running
a connectivity algorithm such as k-nearest neighbors
on L returns A. As first proposed, SPE learns a
matrix K via a semidefinite program (SDP) and then
decomposes K = L⇥L by performing singular value
decomposition.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call an
embedding structure preserving if the application of G
to K exactly reproduces the input graph: G(K) = A.

Linear constraints on K enforce that K preserves the
topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj � 2Kij

Wij = �Dij = �Kii �Kjj + 2Kij

G(K) = arg max
Ã

�

ij

WijÃij s.t. Ã ⌅ T

k-nearest neighbors

Dij > (1�Aij) max
m

(AimDim)

�-balls blah blah

Dij(Aij �
1
2
) ⇥ �(Aij �

1
2
)

maximum weight subgraph method blah blah
When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
Ã

�

ij

WijÃij

s.t.
�

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ⌅ {0, 1}

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

�

ij

WijAij ⇤
�

ij

WijÃij s.t Ã ⌅ G

L 2 Rd⇥n

LSPE

Structure Preserving Embedding
optimized via SDP + SVD

Structure Preserving Embedding
optimized via SGD cont.

A
SGD

LSPE-SGD

Visualizing the Enron Email Network

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Given a network of n nodes represented as a
graph with adjacency matrix A ⌅ Bn�n, SPE finds an
embedding L ⌅ Rd�n such that d is small and running
a connectivity algorithm such as k-nearest neighbors
on L returns A. As first proposed, SPE learns a
matrix K via a semidefinite program (SDP) and then
decomposes K = L⇤L by performing singular value
decomposition. We propose optimizing L directly
using stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K⇥K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⇧i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the dis-
tance constraints above, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik � Kkk. Temporarily
dropping the centering and scaling constraints, we
can now formulate the SDP above as maximizing the
following objective function over L:

f(L) = ⇥tr(L⇤LA)�
X

l⇥S

max(tr(ClL⇤L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇤L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇤L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⌅
t
. After each step, we

can use projection to enforce that tr(L⇤L) ⇥ 1 andP
ij(L

⇤L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm.

of nodes with fewer
than x impostors

link structure of email correspondence between
36692 Enron employees

Political Blogs

Structure Preserving
Embedding (SPE)

Spectral
Embedding

Normalized
Laplacian Eigenmaps

2.854%2.971% 9.281%

Algorithm 1 Large-Scale Structure Preserving Em-
bedding
Require: A ⇧ Bn�n, dimensionality d, regularizer

parameter ⇥, and maximum iterations T
1: Initialize L0 ⌅ rand(d, n)

(or optionally initialize to spectral embedding or
Laplacian eigenmaps solution)

2: t ⌅ 0
3: repeat
4: �t ⌅ 1⇤

t+1

5: i ⌅ rand(1 . . . n)
6: j = arg minj ⌥ Li � Lj ⌥2 ⌃j s.t. A(i, j) = 1
7: C⌅ zeros(n⇥ n)
8: Cjj ⌅ 1, Cij ⌅ �1, Cji ⌅ �1
9: for all k s.t. ⌥ Li � Lk ⌥2 < ⌥ Li � Lj ⌥2

AND A(i, k) = 0 do
10: Cik ⌅ 1, Cki ⌅ 1, Ckk ⌅ �1
11: end for
12: �t ⌅ 2Lt (⇥A�C)
13: Lt+1 ⌅ Lt + �t�t

14: {Subtract out mean}
15: Lt+1 = Lt+1

⇥Lt+1⇥2 {Project on to unit sphere}
16: t ⌅ t + 1
17: until t ⇤ T
18: return L

The Enron email network embedded into 2D by spec-
tral embedding (left), and SPE-SGD (right). The plot
below shows how many nodes have fewer than x im-
postors. We see that embedding this network into 2D
yields many impostors; however on average nodes in
the SPE embedding have many fewer impostors than
nodes in the spectral embedding.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K = L�L specify-
ing an embedding L and returns an adjacency matrix,
we call an embedding structure preserving if the appli-
cation of G to K exactly reproduces the input graph:
G(K) = A.

Linear constraints on K enforce that K preserves the
topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj � 2Kij

Wij = �Dij = �Kii �Kjj + 2Kij

G(K) = arg max
Ã

�

ij

WijÃij s.t. Ã ⌅ T

k-nearest neighbors

Dij > (1�Aij) max
m

(AimDim)

�-balls blah blah

Dij(Aij �
1
2
) ⇥ �(Aij �

1
2
)

maximum weight subgraph method blah blah
When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
Ã

�

ij

WijÃij

s.t.
�

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ⌅ {0, 1}

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

�

ij

WijAij ⇤
�

ij

WijÃij s.t Ã ⌅ G

However, we demonstrate a cutting plane approach
such that the exponential enumeration is avoided
and the most violated inequalities are introduced
sequentially.

yields exponential number of constraints of form:

Structure preserving constraints can also benefit
dimensionality reduction algorithms. These methods
similarly find compact coordinates that preserve
certain properties of the input data. Many of these
manifold learning techniques preserve local distances
but not graph topology. We show that adding explicit
topological constraints to these existing algorithms is
crucial for preventing folding and collapsing problems
that occur in dimensionality reduction.

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Given a network of n nodes represented as a
graph with adjacency matrix A ⌅ Bn�n, SPE finds an
embedding L ⌅ Rd�n such that d is small and running
a connectivity algorithm such as k-nearest neighbors
on L returns A. As first proposed, SPE learns a
matrix K via a semidefinite program (SDP) and then
decomposes K = L⇤L by performing singular value
decomposition. We propose optimizing L directly
using stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K⇥K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⇧i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the dis-
tance constraints above, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik � Kkk. Temporarily
dropping the centering and scaling constraints, we
can now formulate the SDP above as maximizing the
following objective function over L:

f(L) = ⇥tr(L⇤LA)�
X

l⇥S

max(tr(ClL⇤L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇤L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇤L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⌅
t
. After each step, we

can use projection to enforce that tr(L⇤L) ⇥ 1 andP
ij(L

⇤L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm.

Structure Preserving Embedding
optimized via SGD

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

As first proposed, SPE learns a matrix K via a
semidefinite program (SDP) and then decomposes
K = L⇥L by performing singular value decom-
position. We propose optimizing L directly using
stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K�K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⌅i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the dis-
tance constraints above, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik � Kkk. Temporarily
dropping the centering and scaling constraints, we
can now formulate the SDP above as maximizing the
following objective function over L:

f(L) = ⇥tr(L⇥LA)�
X

l�S

max(tr(ClL⇥L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇥L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇥L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⇤
t
. After each step, we

can use projection to enforce that tr(L⇥L) ⇥ 1 andP
ij(L

⇥L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm. link structure of 981 blogs, red is conservative, blue is liberal

reconstruction error shown as percentage

i
j

k

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

As first proposed, SPE learns a matrix K via a
semidefinite program (SDP) and then decomposes
K = L⇥L by performing singular value decom-
position. We propose optimizing L directly using
stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K�K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⌅i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the SPE
distance constraints, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik �Kkk.

Temporarily dropping the centering and scaling
constraints, we can now formulate the SDP above as
maximizing the following objective function over L:

f(L) = ⇥tr(L⇥LA)�
X

l�S

max(tr(ClL⇥L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇥L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇥L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⇤
t
. After each step, we

can use projection to enforce that tr(L⇥L) ⇥ 1 andP
ij(L

⇥L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm.

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

As first proposed, SPE learns a matrix K via a
semidefinite program (SDP) and then decomposes
K = L⇥L by performing singular value decom-
position. We propose optimizing L directly using
stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K�K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⌅i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the SPE
distance constraints, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik �Kkk.

Temporarily dropping the centering and scaling
constraints, we can now formulate the SDP above as
maximizing the following objective function over L:

f(L) = ⇥tr(L⇥LA)�
X

l�S

max(tr(ClL⇥L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇥L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇥L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⇤
t
. After each step, we

can use projection to enforce that tr(L⇥L) ⇥ 1 andP
ij(L

⇥L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm.

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

There are many possible goals for network visualiza-
tion algorithms, such as minimizing edge crossings,
bringing neighbors close, pushing away unconnected
nodes, highlighting clusters, and preserving graph dis-
tances. We propose that accurate visualizations of so-
cial networks should preserve the underlying topolog-
ical structure of the network.

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D � A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

As first proposed, SPE learns a matrix K via a
semidefinite program (SDP) and then decomposes
K = L⇥L by performing singular value decom-
position. We propose optimizing L directly using
stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max
K�K

tr(KA)

Dij > (1�Aij) max
m

(AimDim) ⌅i,j

where K = {K ⇤ 0, tr(K) ⇥ 1,
P

ij Kij = 0}

Structure preserving constraints can be written
as a set of matrices S = {C1,C2, ...Cm}, where
each Cl is a constraint matrix corresponding to
a triplet (i, j, k) such that Aij = 1 and Aik = 0.
This set of all triplets clearly subsumes the SPE
distance constraints, and allows each individual
constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj � 2Kij + 2Kik �Kkk.

Temporarily dropping the centering and scaling
constraints, we can now formulate the SDP above as
maximizing the following objective function over L:

f(L) = ⇥tr(L⇥LA)�
X

l�S

max(tr(ClL⇥L), 0).

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇥L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL⇥L) > 0 then update L according to:

Lt+1 = Lt + ��(f(Lt),Cl)

where the step-size � = 1⇤
t
. After each step, we

can use projection to enforce that tr(L⇥L) ⇥ 1 andP
ij(L

⇥L)ij = 0, by subtracting the mean from L and
dividing each entry of L by its Frobenius norm.

Impostors
Red nodes incur
hinge loss violations
because they are
impostors of the blue
nodes neighborhood.

i j

k

tr(ClK) < 0

tr(ClK) > 0

�(f(L),Cl) =

(
2L(⇥A�Cl) if tr(ClL⇥L) > 0
0 otherwise

Lt+1 = Lt + ��(f(Lt),Cl)

[Shaw, Jebara ’11]

Video:	 h)p://vimeo.com/39656540

Notes	 on	 next	 slide

http://vimeo.com/39656540
http://vimeo.com/39656540

Notes for previous slide:
Each node in this network is a person, each edge represents friendship on
foursquare. The size of each node is proportional to how many friends that
person has. We can see the existence of dense clusters of users, on the right,
the top, and on the left. There is a large component in the middle. There are
clear hubs.

We can now use this low-dimensional representation of this high-dimensional
network, to better track what happens when a new coffee shop opens in the east
village.

As expected, it spreads ...like a virus, across this social substrate. We see as
each person checks in to la colombe, their friends light up. People who have
discovered the place are shown in blue. The current checkin is highlighted in
orange in orange.

It’s amazing to see how la colombe spreads. Many people have been talking
about how ideas, tweets, and memes spread across the internet. For the first
time we can track how new places opening in the real world spread in a similar
way.

The Social Graph

•What does this low-dimensional structure
mean?

•Homophily
• Location, Demographics, etc.

The Social Graph

Influence on foursquare

•Tip network
• sample of 2.5m people “doing” tips from other

people and brands
• avg. path length 5.15, diameter 22.3

•How can find the authoritative people in this
network?

Measuring influence w/ PageRank

• Iterative approach
• start with random values and iterate
•works great w/ map-reduce

PR(i) = (1� d) + d
X

j2{Aij=1}

PR(j)P
k Aik

[Page et al ’99]

Measuring influence w/ PageRank

• Equivalent to finding the principal
eigenvector of the normalized adj. matrix

A 2 Bn⇥n Pij =
AijP
j Aij

PR(i) / vi where Pv = �1v

[Page et al ’99]

Influence on foursquare

•Most influential brands:
• History Channel, Bravo TV, National Post,

Eater.com, MTV, Ask Men, WSJ, Zagat, NY
Magazine, visitPA, Thrillist, Louis Vuitton

•Most influential users
• Lockhart S, Jeremy B, Naveen S

Explore

A social
recommendation
engine built from

check-in data

Foursquare Explore

•Realtime recommendations from signals:
• location
• time of day
• check-in history
• friends preferences
• venue similarities

Putting it all together

User’s check-in history

Friends’ check-in history,
similarity

Nearby relevant
venues

Similar Venues

MOAR Signals

< 200 ms

Our data stack

• MongoDB
• Amazon S3, Elastic Mapreduce
• Hadoop
• Hive
• Flume
• R and Matlab

Open questions

•What are the underlying properties and
dynamics of these networks?

•How can we predict new connections?
•How do we measure influence?
•Can we infer real-world social networks?

Conclusion

•Unique networks formed by people interacting
with each other and with places in the real
world

•Massive scale -- today we are working with
millions of people and places here at
foursquare, but there are over a billion devices
in the world constantly emitting this signal of
userid, lat, long, timestamp

Join us!
foursquare is hiring!
110+ people and growing

foursquare.com/jobs

Blake Shaw
@metablake
blake@foursquare.com

